Publication List

Molecular Design of Monomers and Polymers undergoing No Volume Shrinkage during Polymerization or Crosslinking

Original Papers : 81

Toshikazu TAKATA, Keunwo CHUNG, Atsuhiito TADOKORO, and Takeshi ENDO: Anionic Copolymerization of Bicyclic Bis(g-lactone)s with Epoxides and Volume Change during the Copolymerization; *Macromolecules*, **1993**, 26, 6686-6687.

Keunwo CHUNG, Toshikazu TAKATA, and Takeshi ENDO: Anionic Alternating Ring-Opening Copolymerization of Spirocyclic Bis(g-lactone)s with Bisepoxides and Volume Change during the Copolymerization; *Macromolecules*, **1995**, 28, 1711-1713.

Keunwo CHUNG, Toshikazu TAKATA, and Takeshi ENDO: Anionic Ring-Opening Copolymerization of Bicyclic Bis(g-lactone)s with Mono- and Bifunctional Epoxides via Double Ring-Opening Isomerization of the Bis(g-lactone)s and Volume Change during Copolymerization; *Macromolecules*, **1995**, 28, 3048-3054.

Keunwo CHUNG, Toshikazu TAKATA, and Takeshi ENDO: Anionic Copolymerization of Bicyclic Bis(g-lactone)s with Poly(glycidyl methacrylate) and Volume Change during the Copolymerization; *Macromolecules*, **1995**, 28, 4044-4046.

Toshiro ARIGA, Toshikazu TAKATA, and Takeshi ENDO: Cationic Ring-Opening Polymerization of Cyclic Carbonates with Alkyl Halides To Yield Polycarbonate without the Ether Unit by Suppression of Elimination of Carbon Dioxide; *Macromolecules*, **1997**, *30*, 737-744.

Tetsuo HINO and Takeshi ENDO: A Novel Synthetic Approach to Networked Polymers without Volume Shrinkage on Cross-Linking Polymerization: Cationic
Copolymerization of a Monofunctional Epoxide and Spiro Orthocarbonate Bearing Norbonene Backbone; *Macromolecules*, **2003**, 36, 5902-5904.

Kazuya UENISHI, Atsushi SUDO, and Takeshi ENDO: Anionic alternating copolymerizability of epoxide and 3,4-dihydrocoumarin by imidazole; *Macromolecules*, 2007, 40, 6535-6539.

Reviews and Articles : 30

Takeshi ENDO: Novel No shrinkage plastic; Trigger, 1984, 12, 83-85.

Takeshi ENDO: Recent development on the syntheses of monomers that undertake no shrinkage on polymerization; J. Adhesion Soc. Jpn., 1986, 22, 437-444.

Takeshi ENDO and Toshikazu TAKATA: Vinyl Monomers Containing Functional Groups That shows no Shrinkage During Polymerization; Recent Progress in Reactive monomers; *CMC*, 1988, 174-188.

Takeshi ENDO and Hiza MISAO: Design and Synthesis of no Shrinkage Polymers; *KINOZAIRYO*, 1990, 10, 28.

Takeshi ENDO and Ikuyoshi TOMITA: Organometallic Polymers, Cobalt-Containing; *Polymeric Materials*, 1996, 6M-O, 4822-4826.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Anionic (with Expansion in Volume); *Polymeric Materials*, 1996, 10Q-S, 7550-7554.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Cationic (with Expansion in Volume); *Polymeric Materials*, 1996, 10Q-S, 7554-7560.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Radical; (with No Shrinkage in Volume); *Polymeric Materials*, 1996, 10Q-S, 7569-7576.

Takeshi ENDO and Atsusi SUDO: Synthesis of Monomers that undertake no Shrinkage on Polymerization; *Miraizairyo*, 2007, 7, 26-35.

Books : 27

Takeshi ENDO: Novel No shrinkage plastic; *Trigger*, 1984, 12, 83-85.

Takeshi ENDO: Recent development on the syntheses of monomers that undertake no shrinkage on polymerization; *J. Adhesion Soc. Jpn.*, 1986, 22(8), 437-444.

Takeshi ENDO and Toshikazu TAKATA: Vinyl Monomers Containing Functional Groups That shows no Shrinkage During Polymerization; Recent Progress in Reactive monomers; *CMC*, 1988, 174-188.

Takeshi ENDO and Hiza MISAO: Design and Synthesis of no Shrinkage Polymers; *KINOZAIRYO*, 1990, 10, 28.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Anionic (with Expansion in Volume); Polymeric Materials, 1996, 10Q-S, 7550-7554.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Cationic (with Expansion in Volume); Polymeric Materials, 1996, 10Q-S, 7554-7560.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Radical; (with No Shrinkage in Volume); Polymeric Materials, 1996, 10Q-S, 7569-7576.

Takeshi ENDO and Atsusi SUDO: Synthesis of Monomers that undertake no Shrinkage on Polymerization; Miraizairyo, 2007, 7, 26-35.

Development of Thermal and Photo Latent Catalyst and Initiators
Original Papers : 121

Takeshi ENDO and Hitoshi ARITA: Polymerization of spiroorthocarbonates by sulfonium salts, as latent thermal catalysts; *Makromol. Chem., Rapid Commun.*, 1985, 6, 137-139.

Hitomi UNO, Toshikazu TAKATA, and Takeshi ENDO: Thermoinitiated Cationic Polymerization of Styrene with a Pyridinium Salt; *Chem. Lett.*, 1988, 6, 935.

Mao-Peng LIN, Y. HAYASHI, Tomiki IKEDA, and Takeshi ENDO: Photocrosslinking of polymers initiated by benzylsulphonium salts as cationic initiators. Part II. *Poly(1,3-dioxolane-4-methyl methacrylate) and copolymers with methyl methacrylate*; *J. Mater. Sci.*, **1992**, 27, 2902-2907.

Akihiko KANAZAWA, Tomiki IKEDA, and Takeshi ENDO: Polymeric Phosphonium Salts as a Novel Class of Cationic Biocides. V. Synthesis and Antibacterial Activity of

Jaekyeung PARK, Nobuhiro KIHARA, Tomiki IKEDA, and Takeshi ENDO: Photo-Induced Cationic Ring-Opening Polymerization of 2-Alkenyl-4-methylene-1,3-dioxolanes by Benzylsulfonium Salt; Macromolecules, 1997, 30, 3414-3416.

Yoshinori NAKANE, Masahiro ISHIDOYA, and Takeshi ENDO: Thermal Latency of Zinc 2-Ethylhexanoate Catalyst in the Presence of Triethanolamine and Its Application

Minoru KOBAYASHI, Fumio SANDA, and Takeshi ENDO: Application of Phosphonium Ylides to Latent Catalysts for Polyaddition of Bisphenol A Diglycidyl

Moon Suk KIM, Fumio SANDA, and Takeshi ENDO: Phosphonates as non-salt-type latent initiators for vinyl ether polymerization; *Polymer*, **2001**, 42, 9367-9370.

Reviews and Articles : 13

Books : 15

\textbf{Novel Synthesis and Ring-Opening Polymerization of functional monomers and Application to Functional Polymers}

\textit{Original Papers : 189}

Satoyuki CHIKAOKA, Toshikazu TAKATA, and Takeshi ENDO: New Aspects of Cationic Polymerization of Spiroorthoester: Cationic Single Ring-Opening

Atsuhiro TADOKORO, Toshikazu TAKATA, and Takeshi ENDO: Anionic Ring-Opening Alternating Copolymerization of Bicyclic Bis(γ-lactone) with an Epoxide: a

Toshiro ARIGA, Toshikazu TAKATA, and Takeshi ENDO: Block Copolymerization of Cyclic Carbonate and Oxetanes in One-Shot Feeding; *Macromolecules, 1993*, 26, 7106-7107.

Keunwo CHUNG, Toshikazu TAKATA, and Takeshi ENDO: Anionic Alternating Ring-Opening Copolymerization of Spirocyclic Bis(γ-lactone)s with Bisepoxides and Volume Change during the Copolymerization; *Macromolecules*, 1995, 28, 1711-1713.

Keunwo CHUNG, Toshikazu TAKATA, and Takeshi ENDO: Anionic Ring-Opening Copolymerization of Bicyclic Bis(γ-lactone)s with Mono- and Bifunctional Epoxides via Double Ring-Opening Isomerization of the Bis(γ-lactone)s and Volume Change during Copolymerization; *Macromolecules*, 1995, 28, 3048-3054.

Junichi SUGIYAMA, Mitsuru UEDA, and Takeshi ENDO: Cationic Double
Isomerization Polymerization of 4-Methylene-2-phenyl-2-styryl-1,3-dioxolane

Jaekyeung PARK, Nobuhiro KIHARA, and Takeshi ENDO: Cationic ring-opening
polymerization of 2-isopropenyl-4-methylene-1,3-dioxolane in donative solvents;

Koji NISHIYAMA, Toshikazu TAKATA, and Takeshi ENDO: Curing of Epoxy Resins
Based on Diglycidyl 2,6-Naphthalenedicarboxylate and Properties of Cured Products

Sang-Bong LEE, Kyu-Wan LEE, Toshikazu TAKATA, and Takeshi ENDO: Cationic
Polymerization of Styrene with N-Benzyl Pyridinium Salt. Isolation of Polymeric

Natsuhiro AZUMA, Fumio SANDA, Toshikazu TAKATA, and Takeshi ENDO:
Cationic Ring-Opening Copolymerization of Seven-Membered Cyclic Sulfite and

Jyuhou MATSUO, Fumio SANDA, and Takeshi ENDO: Anionic Ring-Opening
Polymerization Behavior of a Seven-Membered Cyclic Carbonate; 1,3-Dioxepan-2-one;

Wonmun CHOI, Fumio SANDA, Nobuhiro KIHARA, and Takeshi ENDO: Cationic
Isomerization and Ring-Opening Polymerization of a Five-Membered Dithiocarbonate:
The First Example for Control of Isomerization and Polymerization; *J. Polym. Sci. A:

Keunwo CHUNG, Toshikazu TAKATA, and Takeshi ENDO: Anionic Crosslinking of
Polymers Having an Epoxy Group in the Side Chain with Bicyclic and Spirocyclic
Bis(γ-lactone)s; *Macromolecules*, **1997**, 30, 2532-2538.

Haruo NISHIDA, Mitsuhiro YAMASHITA, Norikazu HATTORI, Takeshi ENDO, and Yutaka TOKIWA: Thermal Decomposition of Poly(1,4-dioxan-2-one); *Polym. Degrad. Stab.*, **2000**, 70, 485-496.

Yuji SHIBASAKI, Fumio SANDA, and Takeshi ENDO: Acid-Promoted Living Ring-Opening Polymerization of Cyclic Carbonates with B(OR)₃; *Macromolecules*, **2000**, *33*, 3630-3633.

Yuji SHIBASAKI, Hidetsugu SANADA, Makiko YOKOI, Fumio SANDA, and Takeshi ENDO: Activated Monomer Cationic Polymerization of Lactones and the
Application to Well-Defined Block Copolymer Synthesis with Seven-Membered Cyclic Carbonate; *Macromolecules*, **2000**, 33, 4316-4320.

Fumio SANDA, Masakatsu HITOMI, and Takeshi ENDO: Synthesis and Cationic Polymerization of Bicyclo Orthoester-Based Poly(ε-caprolactone) Macromonomer and
Depolymerization of the Obtained Graft Copolymer; *Macromolecules*, **2001**, *34*, 5364-5366.

Nobukatsu NEMOTO, Xiaoyu XU, Fumio SANDA, and Takeshi ENDO: Cationic Ring-Opening Polymerization of Cyclic Monothiocarbonates: Varying the Polymer Main Chain by Neighboring Group Participation; *Macromolecules*, **2001**, *34*, 7642-7647.

Atsushi NAGAI, Toyoharu MIYAGAWA, Hiroto KUDO, and Takeshi ENDO: Controlled Cationic Ring-Operating Polymerization of 1,3-Oxazolidine-2-thione Derived from L-Serine; Macromolecules, 2003, 36, 9335-9339.

Daisuke NAGAI, Masato SATO, Bungo OCHIAI, and Takeshi ENDO: Controlled Cationic Ring-Opening Polymerization of a Six-Membered Cyclic Thiourethane; Macromolecules, 2004, 37, 3523-3525.

Atsushi NAGAI, Bungo OCHIAI, and Takeshi ENDO: Synthesis and Radical Polymerization of a Novel Macromonomer Obtained by Living Cationic Ring-Opening
Polymerization of an Optically Active Cyclic Thiourethane by a New Initiator Carrying Styryl Group; *Macromolecules*, **2004**, 37, 4417-4421.

Haruo NISHIDA, Hiroshi MORIKAWA, Takeshi ENDO, Takeshi NAKAHARA, Takayuki OGATA, and Koshi KUSUMOTO: Solid state reaction of bifunctional bicyclo
orthoesters and carboxylic acids and their metal adhesive properties; *Polymer*, 2006, 47, 1496-1504.

Hideharu MORI, Mizuki IWATA, Satoko ITO, and Takeshi ENDO: Ring-opening polymerization of \(\gamma \)-benzyl-L-glutamate-N-carboxyanhydride in ionic liquids; *Polymer*, 2007, 48, 5867-5877.

Kazuya UENISHI, Atsushi SUDO, and Takeshi ENDO: Anionic Alternating Copolymerizability of Epoxide and 3,4-Dihydrocoumarin by Imidazole; *Macromolecules*, 2007, 40, 6535-6539.

Kozo MATSUMOTO and Takeshi ENDO: Confinement of Ionic Liquid by Networked Polymers Based on Multifunctional Epoxy Resins; *Macromolecules*, **2008**, *41*, 6981-6986.

Atsushi SUDO, Kazuya UENISHI, and Takeshi ENDO: Anionic alternating copolymerization of epoxide and 3,4-dihydrocoumarin and its application to networked polymers; *Polym. Int.*, **2009**, *58*, 970-975.

Sousuke OHSAWA, Kazuhide MORINO, Atsushi SUDO, and Takeshi ENDO: Alternating Copolymerization of Bicyclic Bis(γ-butyrolactone) and Epoxide through Zwitterion Process by Phosphines; *Macromolecules*, **2010**, 43, 3585-3588.

Ayumu KARIMATA, Kozo MATSUMOTO, and Takeshi ENDO: Syntheses and polymerization of epoxy monomers consisting of carbosilane segments and properties of the networked polymers; Polymer, 2016, 103, 140-145.
Reviews and Articles: 33

Takeshi ENDO: Radical Ring-Opening Polymerization; *KAKENHI*, 1989, 75.

Takeshi ENDO and Tsutomu YOKOZAWA: Radical Ring-Opening polymerization; Polymer Synthesis and Reactions; *KYORITSU SYUPPAN*, 1991, 87.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Radical; (with No Shrinkage in Volume); *Polymeric Materials*, **1996**, *10Q-S*, 7569-7576.

Books : 37

Takeshi ENDO: Radical Ring-Opening Polymerization; *KAKENHI*, 1989, 75.

Takeshi ENDO and Tsutomu YOKOZAWA: Radical Ring-Opening Polymerization; Polymer Synthesis and Reactions; *KYORITSU SYUPPAN*, 1991, 87.

Takeshi ENDO, Toshikazu TAKATA, Tsutomu YOKOZAWA, Nobuhiro KIHARA, Toshio KOIZUMI, and Ikuyoshi TOMITA: Recent Advances in Radical Ring-Opening Polymerization Directed Toward New Functional Materials; *New Functionality*
Fumio SANDA and Takeshi ENDO: Recent Progress of Ring-Opening Polymerization; NIHONGOMUKYOKAISHI, 1993, 66, 623-634.

Yasushi TAKAMATSU, Futoshi HOSHINO, and Takeshi ENDO: Synthesis of Polymer Emulsion by Radical Ring-Opening Polymerization; Polymer applications, 1996, 45, 551-556.

Fumio SANDA and Takeshi ENDO: Progress of Ring-Opening Polymerization -Its History and Recent topics-; *Chemistry and Chemical Industry*, 1999, 52, 468-471.

Fumio SANDA and Takeshi ENDO: Cationic Ring-Opening Polymerization and Depolymerization behavior of Cyclic Dithiocarbonates; *Technology on adhesion & sealing*, 2001, 45, 16-20.

Takeshi ENDO and Atsushi SUDO: Efficient Ring-Opening Polymerization; *Expected materials for the future*, 2006, 6, 26-36.

Takeshi ENDO and Atsushi SUDO: Novel Curing Reactions Based on Copolymerization of Epoxides and Lactones; *Expected materials for the future*, 2008, 8, 36-40.

Synthesis and Application of Monomers Undergoing Radical Ring-Opening Polymerization

Original Papers: 79

Yoichi HIRAGURI, Toshio SUGIZAKI, and Takeshi ENDO: Substituent Effects on Radical Polymerization Behavior of 2,2-(4,4'-Disubstituted-diphenyl)-4-methylene-1,3-dioxolanes; *Macromolecules*, **1990**, *23*, 1-5.

Junichi SUGIYAMA, Kazuki TANIKAWA, Takashi OKADA, Kouichi NOGUCHI, Mitsuru UEDA, and Takeshi ENDO: Ring Expansion Reaction of 2-Vinyl-4-methylene-1,3-dioxolanes to 4,5-Dihydro-3(2H)-oxepinones by Claisen Rearrangement; *Tetrahedron Lett.*, 1994, 35, 3111-3114.

Tsutomu YOKOZAWA, Ryoji HAYASHI, and Takeshi ENDO: Design and Synthesis of Novel Hydrolyzable Polysulfides from 2,4-Dimethylene-1,3-dioxolane; *Macromolecules*, 1994, 27, 3698-3701.

Hiroto CHIBA, Koji KITAZUME, Shuhei YAMADA, and Takeshi ENDO: Synthesis and Radical Ring-Opening Polymerization of Adamantane-containing Bifunctional

Reviews and Articles : 19

Takeshi ENDO: Radical Ring-Opening Polymerization; *KAKENHI*, **1989**, 75.

Takeshi ENDO and Tsutomu YOKOZAWA: Radical Ring-Opening polymerization; *Polymer Synthesis and Reactions; KYORITSU SYUPPAN*, **1991**, 87.

Yasushi TAKAMATSU, Futoshi HOSHINO, and Takeshi ENDO: Polymer Emulsion Synthesis by Ring Opening Polymerization; *Kobunshi Kako*, 1996, 45, 551-556.

Takeshi ENDO and Fumio SANDA: Ring-Opening Polymerization, Radical; (with No Shrinkage in Volume); *Polymeric Materials*, 1996, 10Q-S, 7569-7576.

Fumio SANDA and Takeshi ENDO: Progress of Ring-Opening Polymerization. Its History and Recent Topics; *Chemistry and Chemical Industry*, 1999, 52, 468-471.

Takeshi ENDO and Atsushi SUDO: Efficient Ring-Opening Polymerization; *Expected materials for the future*, **2006**, 6, 26-36.

Takeshi ENDO and Atsushi SUDO: Novel Curing Reactions Based on Copolymerization of Epoxides and Lactones; *Expected materials for the future*, **2008**, 8, 36-40.

Books : 15

Molecular Design and synthesis of novel benzozazines and benzocyclobutenes Applicable to heat resistant materials

Original Papers : 39

Keisuke CHINO and Takeshi ENDO: Prediction of Thermal Isomerization Temperatures

CaiFei WANG, JiaQin SUN, XiangDong LIU, Atsushi SUDO, and Takeshi ENDO: Synthesis and copolymerization of fully bio-based benoxazines from guaiacol, furfurylamine and stearylamine; *Green Chem.*, 2012, 14, 2799-2806.

Asei William KAWAGUCHI, Atsushi SUDO, and Takeshi ENDO: Polymerization-Depolymerization System Based on Reversible Addition-Dissociation Reaction of 1,3-Benzoxazine with Thiol; *ACS Macro Lett.*, 2013, 2, 1-4.

JiaQin SUN, Wei WEI, YaZhen XU, JieHao QU, XiangDong LIU, and Takeshi Endo: A curing system of benzoxazine with amine: reactivity, reaction mechanism and material properties; *RSC Adv.*, 2015, 5, 19048-19057.

Nalakathu Kolanadiyil SINI, Motohisa AZECHI, and Takeshi ENDO: Synthesis and

Reviews and Articles : 2

Takeshi ENDO and Atsushi SUDO: Molecular design of 1,3-benzoxadine derivatives toward high performance materials and development of a novel polymerization system;
SECHAKUNOGIYUTUSHI, 2016, 36, 8-16.

Books : 2

Construction of Chemical Recycle System Based on Equilibrium Polymerization and Reversible Cross-linking Reaction

Original Papers : 34

Kiyoko YOSHIDA, Fumio SANDA, and Takeshi ENDO: Synthesis and Cationic Ring-

Hideyuki OTSUKA and Takeshi ENDO: Poly(hemiacetal ester)s: New Class of Polymers with Thermally Dissociative Units in the Main Chain; *Macromolecules*, 1999, 32, 9059-9061.

Haruo NISHIDA, Mitsuhiro YAMASHITA, Takeshi ENDO, and Yutaka TOKIWA: Equilibrium Polymerization Behavior of 1, 4-Dioxan-2-one in Bulk; *Macromolecules*, 2000, 33, 6982-6986.

Reviews and Articles : 23

Nobuhiro KIHARA and Takeshi ENDO: Molecular design of novel recyclable polymers;
Takeshi ENDO and Nobuhiro KIHARA: Molecular design of novel recyclable polymers; *Kagaku Kogyo*, 1994, 45, 66-73.

Fumio SANDA and Takeshi ENDO: Molecular design of degradable polymers; *Shinsozai*, 1995, 6, 47-49.

Takeshi ENDO: Polymers and their recycle; *MARUZEN*, 1996, 3-10.

Fumio SANDA and Takeshi ENDO: Ring-opening polymerization toward chemical recycle of polymers; *Petrotech*, 1996, 19, 818-819.

Fumio SANDA and Takeshi ENDO: Degradable plastics and their material design; SENTANZAIRYO Series *CHIKYUKANKYOTOZAIRYO*, NIHONZAIRYOKAGAKU Ed, (Shokabo, Tokyo, 1999), 198-206.

Masahiro ISHIDOYA, Yoshinori NAKANE, Kishio SHIBATOH, Osamu OHE, and Takeshi ENDO: Development of novel crosslink system based on thermal dissociation

Takeshi ENDO: Expectations for recyclable material design; *KAGAKUKEIZAI*, **2001**, 5, Introduction.

Books: 21

Fumio SANDA and Takeshi ENDO: Molecular design of degradable polymers; *Shinsozai*, **1995**, *6*, 47-49.

Takeshi ENDO: Polymers and Recycle; *MARUZEN*, **1996**, 3-10.

Fumio SANDA and Takeshi ENDO: Degradable plastics and their material design; *SENTANZAIYI Series CHIKYUKANKYOTOZAIRYO*, NIHONZAIRYOKAGAKU Ed, (Shokabo, Tokyo, **1999**), 198-206.

Takeshi ENDO: Expectations for recyclable material design; *KAGAKUGEIZAI*, 2001, 5, Introduction.

Takeshi ENDO: Expectations for chemical recycle of polymer materials; *Kemikaru Enjinyaringu*, 2001, 46, 516-519.

Synthesis of Cyclic Carbonates and Application to Functional Polymers using CO₂ as Monomers

Original Papers : 73

Nobuhiro KIHARA and Takeshi ENDO: Synthesis and reaction of polymethacrylate bearing cyclic carbonate moieties in the side chain; *Makromol. Chem.*, 1992, 193, 1481-

Atsushi SUDO, Yosuke MORIOKA, Eri KOIZUMI, Fumio SANDA, and Takeshi

Shin-ichi YAMAMOTO, Katsuyuki KAWABATA, Osamu MORITA, and Takeshi
Bungo OCHIAI, Masahiro MATSUKI, Toyoharu MIYAGAWA, Daisuke NAGAI, and Takeshi ENDO: Kinetic and computational studies on aminolysis of bicyclic carbonates bearing alicyclic structure giving alicyclic hydroxyurethanes; *Tetrahedron*, **2005**, 61, 1835-1838.

Bungo OCHIAI, Yugo HATANO, and Takeshi ENDO: Fixing Carbon Dioxide Concurrently with Radical Polymerization for Utilizing Carbon Dioxide by Low Energy Cost; *Macromolecules*, **2008**, 41, 9937-9939.

Bungo OCHIAI, Yuriko SATOH, and Takeshi ENDO: Polyaddition of Bifunctional Cyclic Carbonate with Diamine in Ionic Liquids: *In Situ* Ion Composite Formation and

Balaka BARKAKATY, Kazuhide MORINO, Atsushi SUDO, and Takeshi ENDO: Amidine-mediated delivery of CO₂ from gas phase to reaction system for highly efficient synthesis of cyclic carbonates from epoxides; *Green Chem.*, 2010, 12, 42-44.

Naoto AOYAGI, Yoshio FURUSHO, and Takeshi ENDO: Fast equilibrium of zwitterionic adduct formation in reversible fixation-release system of CO\textsubscript{2} by amidines under dry conditions; *Tetrahedron*, **2013**, *69*, 5476-5480.

Hiroyuki MATSUKIZONO and Takeshi ENDO: Synthesis of polyhydroxyurethanes from di(trimethylolpropane) and their application to quaternary ammonium chloride-functionalized films; *RSC Adv.*, **2015**, *5*, 71360-71369.

Yoshiaki YOSHIDA and Takeshi ENDO: Color change of alternating copolymers with
phenyl vinylethylene carbonate and N-phenylmaleimide in a solution and in the solid-state, depending on their structure; *RSC Adv.*, **2017**, 7, 9373-9380.

Naoto AOYAGI and Takeshi ENDO: CO$_2$ capture capacity of five- and six-membered cyclic amidines bearing silatranyl group under dry conditions; *Tetrahedron*, **2017**, **73**, 1529-1533.

Naoto AOYAGI, Yoshio FURUSHO, and Takeshi ENDO: Cyclic amidine hydroiodide for the synthesis of cyclic carbonates and cyclic dithiocarbonates from carbon dioxide or carbon disulfide under mild conditions; *Tetrahedron*, 2019, 75, 130781.

Naoto AOYAGI, Yoshio Furusho, and Takeshi ENDO: Efficient Catalysts of Acyclic Guanidinium Iodide for the Synthesis of Cyclic Carbonates from Carbon Dioxide and Epoxides under Mild Conditions; *Synthesis*, 2020, 52, 150-158.

Reviews and Articles : 14

Takeshi ENDO and Nobuhiro KIHARA: Design of reactive polymers based on organic synthesis II, I Design of reactive polymers utilizing carbon dioxide as a starting material; *HANNOUSEIPORIMANOSHINTENKAI, CMC*, 1993, 1-14.

Bungo OCHIAI, Daisuke NAGAI, and Takeshi ENDO: Creation of novel polymer materials by using CO₂ as a C1 source; *Mirai Zairyo*, 2004, 4, 22-27.

Bungo OCHIAI and Takeshi ENDO: At normal temperature/mild condition! Synthesis of polyurethanes by using CO₂–CO₂ as a source of chemical materials; *KAGAKU*, 2008, 63, 34-36.
Takeshi ENDO and Bungo OCHIAI: Fixation of Carbon Dioxide and Its Application for Material Synthesis; *J. Adhesion Soc. Jpn.*, 2009, 45, 118-123.

Takeshi ENDO, Bungo OCHIAI, and Atsushi SUDO: Synthesis of five-membered cyclic carbonates from reaction of epoxides with CO$_2$ under ambient pressure and its application for polyurethanes bearing hydroxyl groups; *Mirai Zairyo*, 2010, 10, 14-19.

Bungo OCHIAI and Takeshi ENDO: Synthesis of reactive polymers from CO$_2$; *Fain Kemikaru*, 2010, 39, 24-29.

Takeshi ENDO and Bungo OCHIAI: Synthesis of polymers from CO$_2$; *Kagaku Kogyo*, 2011, 75, 426-428.

Takeshi ENDO and Bungo OCHIAI: Synthetic technology of polymers by using CO$_2$; *J. Jpn. Coat. Tech. Assoc.*, 2011, 46, 57-63.

Bungo OCHIAI and Takeshi ENDO: Synthesis and property of transparent polymer materials by using carbon dioxide as a source; Functionalization of film/coating reagents without loss of transparency; *GIJYUTUJYOUHOUKYOUKAI*, 2012, *Chapter 8-1*, 461-465.

Books : 15

Takeshi ENDO and Nobuhiro KIHARA: Design of reactive polymers based on organic synthesis II, I Design of reactive polymers utilizing carbon dioxide as a starting material; *HANNOUSEIPORIMANOSHINTENKAI, CMC*, 1993, 1-14.

Bungo OCHIAI, Daisuke NAGAI, and Takeshi ENDO: Creation of novel polymer materials by using CO$_2$ as a C1 source; *Mirai Zairyo*, 2004, 4, 22-27.

Bungo OCHIAI and Takeshi ENDO: At normal temperature/mild condition! Synthesis of polyurethanes by using CO$_2$–CO$_2$ as a source of chemical materials; *KAGAKU*, 2008, 63, 34-36.

Takeshi ENDO and Bungo OCHIAI: Fixation of Carbon Dioxide and Its Application for Material Synthesis; *J. Adhesion Soc. Jpn.*, 2009, 45, 118-123.

Takeshi ENDO, Bungo OCHIAI, and Atsushi SUDO: Synthesis of five-membered cyclic carbonates from reaction of epoxides with CO$_2$ under ambient pressure and its application for polyurethanes bearing hydroxyl groups; *Mirai Zairyo*, 2010, 10, 14-19.

Bungo OCHIAI and Takeshi ENDO: Synthesis of reactive polymers from CO$_2$; *Fain Kemikaru*, 2010, 39, 24-29.

Takeshi ENDO and Bungo OCHIAI: Synthesis of polymers from CO$_2$; *Kagaku Kogyou*, 2011, 75, 426-428.

Takeshi ENDO and Bungo OCHIAI: Synthetic technology of polymers by using CO$_2$; *J.

Bungo OCHIAI and Takeshi ENDO: Synthesis and property of transparent polymer materials by using carbon dioxide as a source; Functionalization of film/coating reagents without loss of transparency; *GIJYUTUJYOUHOKYOUKAI*, 2012, Chapter 8-1, 461-465.

Naoto AOYAGI, Bungo OCHIAI, and Takeshi ENDO: Diminution of CO$_2$, novel technologies for energy saving, adaption examples, and regulatory compliance; *GIJYUTUJYOUHOKYOUKAI*, 2017, Chapter 3-4, 161-167.

Synthesis of Sulfur-Containing Monomers and Networked Polymers

Original Papers : 104

Atsuko FUJIMOTO, Takeshi ENDO, and Makoto OKAWARA: Synthesis of a polymer containing the cyclic disulfide(1, 2-dithiolane) structure; *Makromol. Chem.*, 1974, 175, 3597-3602.

Kentaro AGEISHI, Takeshi ENDO, and Makoto OKAWARA: Reduction of Aldehydes and Ketones by Sodium Dithionite Useing Viologens as Electron Transfer Catalyst; *J.

Eri YOSHIDA, Toshikazu TAKATA, Takeshi ENDO, Takashi ISHIZONE, Akira HIRAO, and Seiichi NAKAHAMA: Convenient Synthesis of Bis-1, 3-dithiolium Salts by One-electron Oxidation of Tetrathiafulvalene with Oxoaminium Salts; *Chem. Lett.*, **1994**, 104.
1827-1828.

Toshikazu TAKATA, Kazuaki NAKAMURA, and Takeshi ENDO: Polysulfoximines, a Novel Class of Sulfur-Containing Polymers; Macromolecules, 1996, 29, 2696-2697.

Natsuhiro AZUMA, Fumio SANDA, Toshikazu TAKATA, and Takeshi ENDO: Cationic

Jong-Chan LEE, Ikuyoshi TOMITA, and Takeshi ENDO: Synthesis of (η⁵-Cyclopentadienyl) (η⁴-cyclopenta-2,4-dien-1-thione)cobalt by the Reaction of

Hidetoshi TOMITA, Fumio SANDA, and Takeshi ENDO: Polyaddition of Bis(cyclic...

Akane SUZUKI, Daisuke NAGAI, Bungo OCHIAI, and Takeshi ENDO: Star-Shaped Polymer Synthesis by Anionic Polymerization of Propylene Sulfide Based on Trifunctional Initiator Derived from Trifunctional Five-Membered Cyclic Dithiocarbonate; *Macromolecules*, 2004, 37, 8823-8824.

Tohru NAKAMURA, Bungo OCHIAI, and Takeshi ENDO: Efficient Chemical

Kazuya UENISHI, Atsushi SUDO, and Takeshi ENDO: Synthesis and Crosslinking Reaction of Poly(thiourethane)s Having a Siloxane Moiety in the Side Chain; *J. Polym.*

Atsushi NAGAI, Bungo OCHIAI, and Takeshi ENDO: Chiroptical inversion induced by sandwiching units in chiral polythiourethane; *Chem. Commun.*, **2006**, 1515-1517.

Bungo OCHIAI and Takeshi ENDO: Synthesis of polymers from carbon disulfide; *Ryusan to Kogyo*, 2007, 60, 155-166.

Naoto AOYAGI and Takeshi ENDO: A Catalyst-Free and Chemoselective Synthesis of
Episulfides from Epoxides in 2,3-Butanediol without Formation of Poly(episulfide)s; *ChemistrySelect*, 2017, 2, 4466-4468.

Naoto AOYAGI, Yoshio FURUSHO, and Takeshi ENDO: Cyclic amidine hydroiodide for the synthesis of cyclic carbonates and cyclic dithiocarbonates from carbon dioxide or carbon disulfide under mild conditions; *Tetrahedron*, 2019, 75, 130781.

Naoto AOYAGI and Takeshi ENDO: Six-Membered Cyclic Amidines as Efficient Catalysts for the Synthesis of Cyclic Dithiocarbonates from Carbon Disulfide and Epoxides under Mild Conditions; *Synlett*, 2020, 31, 92-96.

Reviews and Articles : 7

Toshikazu TAKATA, and Takeshi ENDO: Thiosulphinic acid and esters; The Chemistry of Sulphinic Acids, Esters and their Derivatives; *The Chemistry of Sulphinic Acids, Esters and their Derivatives JohnWiley & Sons Ltd.*, 1990, 18, 527-575.
Fumio SANDA and Takeshi ENDO: Cationic ring-opening polymerization of cyclic dithiocarbonates and depolymerization behavior of the obtained polymers; *Setchaku*, **2001**, *45*, 16-20.

Takeshi ENDO and Toyoharu MIYAGAWA: New material design from epoxide and carbon disulfide; *Setchaku*, **2003**, *47*, 204-208.

Bungo OCHIAI and Takeshi ENDO: Polymer synthesis by using carbon disulfide as a source; *Ryusan to Kogyo*, **2007**, *60*, 1-12.

Books : 9

Takeshi ENDO and Kazunori ISHIKAWA: Functionalization of poly(amino acid)s; Synthesis and application of amino acid polymers; *CMC*, **1988**, 1-10.

Fumio SANDA and Takeshi ENDO: Cationic ring-opening polymerization of cyclic dithiocarbonates and depolymerization behavior of the obtained polymers; *Setchaku*, **2001**, *45*, 16-20.

Takeshi ENDO and Toyoharu MIYAGAWA: New material design from epoxide and carbon disulfide; *Setchaku*, **2003**, *47*, 204-208.
Daisuke NAGAI, Bungo OCHIAI, and Takeshi ENDO: Creation of novel polymer materials by using CS$_2$ as a source; *Mirai Zairyo*, 2004, 4, 24-29.

Bungo OCHIAI and Takeshi ENDO: Polymer synthesis by using carbon disulfide as a source; *Ryusan to Kogyo*, 2007, 60, 1-12.

Construction of Phosgene-free Method Applicable to Synthesis of Functional Polypeptides

Original Papers : 47

Yasutaka KAMEI, Atsushi SUDO, Haruo NISHIDA, Kiyoshi KIKUKAWA, and Takeshi ENDO: Synthesis of polypeptide-polyether conjugates from an activated urethane derivative of γ-benzyl-\(L\)-glutamate as a monomer; *Polym. Bull.* 2008, 60, 625-634.

Yasutaka KAMEI, Atsushi NAGAI, Atsushi SUDO, Haruo NISHIDA, Kiyoshi KIKUKAWA, and Takeshi ENDO: Convenient Synthesis of Poly(γ-benzyl-\(L\)-glutamate)

Guliz BOZOKALFA, Huseyin AKBULUT, Bilal DEMIR, Emine GULER, Z. Pinar GUMUS, Dilek Odaci DEMIRKOL, Ebru ALDEMIR, Shuhei YAMADA, Takeshi

Shuhei YAMADA, Mitsuaki GOTO, and Takeshi Endo: Convenient phosgene-free synthesis of polypeptides bearing reactive alkene moiety through polycondensation of activated urethane derivative of α-amino acid; *Polymer*, **2016**, *93*, 174-180.

Reviews and Articles : 10

Takeshi ENDO and Kazunori ISHIKAWA: Functionalization of poly(amino acid)s; Synthesis and functionalization of amino acid polymer; *CMC*, **1988**, 1-10.

Books : 8

Takeshi ENDO and Kazunori ISHIKAWA: Functionalization of poly(amino acid)s; Synthesis and functionalization of amino acid polymer; *CMC*, 1988, 1-10.

Takeshi ENDO: Functionalization of poly(amino acid)s and its application; *Fragrance J.*, 1988, 16, 84-89.

Izumi KUBO, Yoko NAMBU, and Takeshi ENDO: Property of poly(γ-glutamate)s

Amide, Oxazolidone, Pyrrolidone, and Alloxan

Original Papers : 56

Takeshi ENDO, Ryozo NUMAZAWA and Makoto OKAWARA: Copolymerization of N-Vinyl-2-oxazolidone with Methacrylic Acid in Various Solvent; *Kobunshi Kagaku, 1973*, 30 (336), 185-188.

Tatsuki SUZUKI, Yoko NAMBU, and Takeshi ENDO: Radical Copolymerization of Lipoamide with Vinyl Monomers; Macromolecules, 1990, 23 (6), 1579-1582.

Osamu MORIYA, Toshikiyo URATA, and Takeshi ENDO: Dehydrochlorination of Hydroximic Acid Chlorides by the Use of Organotin Compounds: An Application for

Osamu MORIYA, and Takeshi ENDO: Synthesis of Polyisoxazolines via 1, 3-Dipolar

Reviews and Articles : 1

Books : 1

Biocompatible and Biodegradable Polymers

Original Papers : 16

Takayuki TSUKEGI, Haruo NISHIDA, Masaki OMURA, Yoshihito SHIRAI, and Takeshi ENDO: Recovery of Lactide from Polylactic Acid / Polyethylene Blend with Extruder; Kobunshi Ronbunshu, 2006, 63(4), 241-247.

Reviews and Articles : 1

Books : 1

Biocide and Antibacterial Materials

Original Papers : 33

Yasushi SAOTOME, Takeo MIYAZAWA, and Takeshi ENDO: Novel Enzymatically

Kozo MATSUMOTO, Bandana TALUKDAR, and Takeshi ENDO: Synthesis and properties of methacrylate-based ionic networked polymers containing ionic liquids:

QingBo XU, XiaTing KE, DongRong CAI, YanYan ZHANG, FeiYa FU, Takeshi ENDO, and XiangDong LIU: Silver-based, single-sided antibacterial cotton fabrics with improved durability via an L-cysteine binding effect; *Cellulose*, **2018**, *25*(3), 2129-2141.

Reviews and Articles : 3

Books : 3

Adhesive and Dental Materials

Original Papers : 36

Kunio IKEMURA, and Takeshi ENDO: Syntheses of Adhesive-promoting Monomers Bearing Carboxylic Moieties and their Bonding Performance with New Polymerization Initiators Comprising 5-Monosubstituted Barbituric Acids (Japanese); *Journal of The

Daisuke NAGAI, Takayoshi YAO, Osamu NISHIZAWA, Bungo OCHIAI and Takeshi ENDO: Graft Polymerization of Methacrylic Acid onto Low-Density Polyethylene and Adhesiveness of the Obtained Grafted Copolymers; Journal of The Adhesion Society of

Kunio IKEMURA, Katsunori KOJIMA, Takeshi ENDO, and Yoshinori KADOME: Effect of novel dithiooctanoate monomers, in comparison with various sulfur-containing adhesive monomers, on adhesion to precious metals and alloys; *Dent. Mater. J.*, **2011**, 30, 72-78.

Kunio IKEMURA, Hisaki TANAKA, Toshihide FUJII, Mikito DEGUCHI, Noriyuki NEGORO, Takeshi ENDO, and Yoshinori KADOME: Design of a new, multi-purpose, light-curing adhesive comprising a silane coupling agent, acidic adhesive monomers and

Reviews and Articles : 5

Takeshi ENDO and Ikuyoshi TOMITA: Reactive Polymer Material for Functional

Books : 15

Fumio SANDA and Takeshi ENDO: Molecular Design and Application of Curable resin by Synthetic Chemistry; The plastics, 1994, 40(11), 2-6.

Cumulenes

Original Papers : 77

Tsutomu YOKOZAWA, Masao TANAKA, and Takeshi ENDO: Novel Radical Polymerization Behavior of 2-Cyano-2-propyl Methyl Ketene Acetal via Retro-Ene

Eiichi SATO, Tsutomu YOKOZAWA, and Takeshi ENDO: Polyaddition of Diallenes: Radical Polyaddition of Dithiols to 1, 4-Bis(allenylxylo)benzene; *Macromolecules*, 1993, 26 (19), 5185-5186.

Eiichi SATO, Tsutomu YOKOZAWA, and Takeshi ENDO: Radical Polyaddition of Dithiols to Bis(alkoxyallene)s; *Macromolecules*, 1993, 26 (19), 5187-5191.

Takeshi ENDO and Ikuyoshi TOMITA: Design of Functional Polymers Based on Organic Synthesis - Novel Polymerizations of Allene and Propargyl Derivatives -; *Macromol.*

Nobuyuki MIYAKI, Ikuyoshi TOMITA, and Takeshi ENDO: Coupling Polymerization of Monofunctional Allene Derivatives with Malonates Bearing Aryl Halides Moieties via

Shin-ichi YAMAMOTO, Fumio SANDA, and Takeshi ENDO: Spontaneous Alternating Copolymerization of Methoxyallene with N-Phenylmaleimide; Macromolecules, 1999, 32(17), 5501-5506.

Masanori TAGUCHI, Ikuyoshi TOMITA, and Takeshi ENDO: Living Coordination Polymerization of Allene (1,2-Propadiene) by \(\pi \)-allylnickel catalyst and selective hydroisilylation reaction of polymers having polyallene units; *Macromol. Chem. Phys.*, **2000**, *201*(17), 2322-2327.

Hideyuki OTSUKA, Ken-ichi MORI, and Takeshi ENDO: Novel Reactive Polymers Containing Hemiacectal Ester and Vinyl Moieties: Synthesis and Selective Polymerization of 1-Methoxyallyl Methacrylate Derived from Methacrylic Acid and Methoxyallene;

Reviews and Articles: 12

Takeshi ENDO and Ikuyoshi TOMITA: Development of Novel Polymerization reaction by using Allene Derivatives; *KINOUZAIRYO*, 1993, 13(9), 5-12.

Ikuyoshi TOMITA and Takeshi ENDO: Development of Multicomponent
Polycondensation of Allene and Acetylene derivatives; *Polymer application*, 1999, 47(12), 9-14.

Books : 13

Takeshi ENDO and Ikuyoshi TOMITA: Development of Novel Polymerization reaction by using Allene Derivatives; *KINOUZAIYORO*, 1993, 13(9), 5-12.

Ikuyoshi TOMITA and Takeshi ENDO: Development of Multicomponent Polycondensation of Allene and Acetylene derivatives; Polymer application, 1999, 47(12), 9-14.

Atsushi SUDO and Takeshi ENDO: Development and Application of Reactive Polymer; Poly(2-Azetidinone) Based on [2+2] Cycloaddition Reaction of Bisketene and Bisimine; Adhesion and adhesives, 2000, 44, 258-264.

Organometallic Polymers

Original Papers : 25

Ikuyoshi TOMITA, Akinori NISHIO, and Takeshi ENDO: Rearrangement of the Main Chain of an Organocobalt Polymer: Synthesis of Novel 2-Pyridone-Containing Polymers by the Reaction with Isocyanates; *Macromolecules*, **1995**, 28 (9), 3042-3047.

Osamu MORIYA, Asami MATSUI, Toshio SUGIZAKI, Masayuki OIKAWA, Toshifumi KAGEYAMA, Yoshiyuki NAKAMURA, and Takeshi ENDO: Synthesis of Polyester
Modified Silica Gel from Polymeric Tributylstannyl Ester of Silicic Acid and \(\varepsilon \)-Caprolactone; *Polym. J.*, **2000**, *32*(1), 82-86.

Reviews and Articles : 4

Ikuyoshi TOMITA and Takeshi ENDO: Polymers Containing Metal Atoms in the Main Chain; *Kobunshi*, **1993**, *42*(7), 572-575.

Ikuyoshi TOMITA and Takeshi ENDO: Synthesis and Application of Organometallic Polymers Containing Transition Metal in the Main Chain; *Polymer application*, **1995**, *415*(9), 31-36.

Books : 4

Ikuyoshi TOMITA and Takeshi ENDO: Polymers Containing Metal Atoms in the Main Chain; Kobunshi, 1993, 42(7), 572-575.

Ikuyoshi TOMITA and Takeshi ENDO: Synthesis and Application of Organometallic Polymers Containing Transition Metal in the Main Chain; Polymer application, 1995, 415(9), 31-36.

Takeshi ENDO and Ikuyoshi TOMITA: Organometallic Polymers, Cobalt-Containing; Polymeric Materials, 1996, 6M-O, 4822-4826.

Isocyanate, Isocyanurate, Urethanes

Original Papers : 23

Takeshi ENDO, Masami KANAMARU, and Toshikazu TAKATA: Synthesis of Poly(N-acylurethane)s, a New Class of Polyurethanes; Macromolecules, 1994, 27 (14), 3694-3697.

Eri YOSHIDA, Takashi ISHIZONE, Akira HIRAO, Seiichi NAKAHAMA, Toshikazu TAKATA, and Takeshi ENDO: Synthesis of Polystyrene Having as Aminoxy Terminal by the Reactions of Living Polystyrene with an Oxoaminium Salt and with the Corresponding Nitroxyl Radical; Macromolecules, 1994, 27 (12), 3119-3124.

Masami KANAMARU, Toshikazu TAKATA, and Takeshi ENDO: A Novel Polymerization of Bis(N-acyl isocyanate)s and Dicarboxylic Acids-Synthesis of Poly(N-acylamide); Macromolecules, 1995, 28 (24), 7979-7982.

2620-2624.

Reviews and Articles : 2

Books : 1

Precision Polymerization

Original Papers : 78
Yoko NAMUBU and Takeshi ENDO: Controlled Polymerization of Alkyl Glycidyl Ether by a New Catalyst System, Aryl Silyl Ether/CsF; Macromolecules, 1991, 24 (8), 2127-2128.

Ryoji NOMURA and Takeshi ENDO: Two-Electron Reduction of the Cationic

Tsutomu YOKOZAWA, Makoto NISHIMORI, Shigeo MIZUKAMI, and Takeshi ENDO: Synthesis of Polyethers of the Type(A-O-B-O)n via Insertion of Diol Bis(trimethylsilyl) Ethers into Polyethers of the Type(A-O)n; *Macromolecules*, **1996**, *29* (24), 8017-8018.

Mamiko NARITA, Ryoji NOMURA, and Takeshi ENDO: Transformation of the Cationic Growing Center of Poly(Tetrahydrofuran) into a Samarium Enolate. Block Copolymerization of Tetrahydrofuran with Methyl Methacrylate; Macromolecules, 1998, 31(9), 2774-2778.

Akiko GOSHO, Ryoji NOMURA, Ikuyoshi TOMITA, and Takeshi ENDO: Living Polymerization of tert-Butyl 4-Vinylbenzoate by the Sml₂/Sml₃ System; Macromolecules, 1998, 31(10), 3388-3390.

Hideharu MORI, Shuji NAKANO, and Takeshi ENDO: Controlled Synthesis of Poly(N-ethyl-3-vinylcarbazole) and Block Copolymers via RAFT Polymerization; *Macromolecules*, **2005**, 38(20), 8192-8201.

Masa-aki MORIKAWA, Masakuni YOSHIHARA, Takeshi ENDO, and Nobuo KIMIZUKA: ATP as Building Blocks for the Self-Assembly of Excitonic Nanowires; *J.

Hisatoyo MORINAGA, Hiroshi MORIKAWA, Yanmei WANG, Atsushi SUDO, and Takeshi ENDO: Amphiphilic copolymer having acid-labile acetal in the side chain as a hydrophobe: Controlled release of aldehyde by thermoresponsive aggregation-dissociation of polymer micelles; *Macromolecules*, 2009, 42, 2229-2235.

Yanmei WANG, Hisatoyo MORINAGA, Atsushi SUDO, and Takeshi ENDO: Synthesis of amphiphilic polyacetal by polycondensation of aldehyde and polyethylene glycol as an

Keiichi YAMAMOTO, Daichi SUEMASA, Kana MASUDA, Kazunari AITA, and Takeshi ENDO: Hyperbranched Triphenylamine Polymer for UltraFast Battery Cathode; ACS applied materials & interfaces; 2018, 10(7), 6346-6353.

Reviews and Articles : 2

Books : 5

Optically Active Polymers

Original Papers : 25

28 (9/10), 509-510.

Hiroto KUDO, Fumio SANDA, and Takeshi ENDO: Synthesis and Radical Polyaddition

Polymer Reaction and Model Reaction: Oxidation, Reduction, Aminolysis, Hydrolysis and Radical Reaction

radicalOriginal Papers : 53

Yoko NAMBU, Masashi KIJIMA, Takeshi ENDO, and Makoto OKAWARA: Reductive

Takeo MIYAZAWA and Takeshi ENDO: Oxidation of Benzyl Alcohol by Fe (III)

Yoshihiko WATANABE and Takeshi ENDO: Stereocontrol in Radical Cyclization: Stereoselective Synthesis of 2, 4-cis and 2, 4-Trans Tetrahydrofuran Derivatives via Mono- or Dichloromethyl Radical; *Tetrahedron Lett.*, 1988, 29 (3), 321-324.

Takeo MIYAZAWA and Takeshi ENDO: Oxidation of Benzyl Alcohol with Cu(II)Mediated by Polymeric Oxoaminium Salt; *J. Mol. Cat.*, 1988, 49, L31-L34.

Eri YOSHIDA, Toshikazu TAKATA, and Takeshi ENDO: Efficient and Selective Oxidation of a Polymeric Terminal Diol with Cu(II) Mediated by Nitroxy1 Radical; *J.
Eri YOSHIDA, Toshikazu TAKATA, and Takeshi ENDO: Oxidation of Terminal Diols with Iron (III) or Copper (II) Salts Mediated by the Nitroxyl Radical; *Macromolecules*, **1992**, *25*(26), 7282-7285.

Reviews and Articles : 10

Takeshi ENDO: Polymer Reaction; Reaction of Polymers with Low Molecular Substance; Polycrylate Derivatives; *Kyoritsu Shuppan*, 80-96.

Takeshi ENDO: We Are Living in Reduction Reaction –Appreciation and Problem-; *Expected materials for the future*, 2008, 8, 1.

Books : 5

Takeshi ENDO: Polymer Reaction; Reaction of Polymers with Low Molecular Substance; Polyacrylate Derivatives; *Kyoritsu Shuppan*, 80-96.

Takeshi ENDO: We Are Living in Reduction Reaction –Appreciation and Problem--; *Expected materials for the future*, 2008, 8, 1.

Radical Polymerization

Original Papers : 41

Ikuyoshi TOMITA, Isao YAMAMURA, and Takeshi ENDO: Isomerization and Radical

Bungo OCHIAI, Ikuyoshi TOMITA, and Takeshi ENDO: Radical Polymerization Behavior of 4-Monosubstituted and 2,4-Disubstituted Enynes; *Macromolecular Chemistry and Physics*, 2001, 202(16), 3099-3105.

Bungo OCHIAI, Ikuyoshi TOMITA, and Takeshi ENDO: Thermal Crosslinking of Acetylene-Containing Polymers Obtained by Radical Polymerization of Aromatic Enynes; *Polymer*, 2001, 42(21), 8581-8586.

Hiroki YAMAZAKI, Wonmun CHOI, Tomomi NAGASAWA, Tomoyuki MATSUMURA, and Takeshi ENDO: Conversation of Vulcanized Natural Rubber into...

Atsushi NAGAI, Bungo OCHIAI, and Takeshi ENDO: Cyclopolymerization of Bisacrylamide Derived from α-Pinene through Larger Chiral Ring Formation; *Macromolecules*, 2005, 38(7), 2547-2549.

Yoshito ANDOU, Mikio YASUTAKE, Jae-Mun JEONG, Masao KANEKO, Haruo NISHIDA, and Takeshi ENDO: Gas-phase-assisted surface polymerization of methyl methacrylate with Fe(0)/TsCl initiator system; *J. Appl. Polym. Sci.*, 2007, 103, 1879-1886.

Bungo OCHIAI, Satoko ITO, and Takeshi ENDO: Chiral interaction between aromatic aldehydes and a polymer bearing large chiral rings obtained by cyclopolymerization of bisacrylamide; *Polym. J.*, **2010**, *42*, 138-141.

Guang-Hui XI, Wan-Chao FAN, Lu WANG, Xiang-Dong LIU, Takeshi ENDO: Fabrication of asymmetrically superhydrophobic cotton fabrics via mist

Synthesis of Functional Polymers

Original Papers : 59

Masao YAMAGUCHI, Toshikazu TAKATA, and Takeshi ENDO: Oxidation of Cycloalkanols to the Corresponding Cycloalkanones with Chlorine in the Presence of Nitroxy1 Radical as a Mediator; *Bull. Chem. Soc. Jpn.*, 1990, 63, 947-949.

Takeshi MORIGUCHI and Takeshi ENDO: Addition-Elimination Reaction in the

I. E. SERHATLI, Y. YAGCI, Ikuyoshi TOMITA, Masato SUZUKI, and Takeshi ENDO:

Hyun-Kyoung KIM, Xiao-Shui- WANG, Yukihiro FUJITA, Atsushi SUDO, Haruo NISHIDA, Masayuki FUJII, and Takeshi ENDO: Reversible Photo-Mechanical Switching Behavior of Azobenzene-Containing Semi-Interpenetrating Network under

Hyun-Kyoung KIM, Xiao-Shui WANG, Yukihiro FUJITA, Atsushi SUDO, Haruo NISHIDA and Takeshi ENDO: A rapid photomechanical switching polymer blend system composed of azobenzene-carrying poly(vinylether) and poly(carbonate); *Polymer*, **2005**, 46, 5879-5883.

Shimon TANAKA, Haruo NISHIDA, and Takeshi ENDO: Miscibility of polystyrene with one hydroxystyrene chain end into poly(butyl methacrylate); *Macromolecules*, **2009**, **42**, 293-298.

Ayumu. KARIMATA, Kozo MATSUMOTO, and Takeshi ENDO: Syntheses and thermal properties of polyesters bearing a carbosilane repeating unit; Polymer Bulletin, 2017, 74(6), 2391-2399.

Reviews and Articles : 63

Takeshi ENDO: Polystyrene; *Kobunshi*, 1980, 29, 442-446.

Takeshi ENDO: Development of New Electron Transport System and Its Application to Polymer Membrane; *Membrane*, 1984, 9, 146-160.

Takeshi ENDO: Polymers that Hardens with Water; Chemistry and Education, 1987, 35, 528-531.

Takeshi ENDO, Yoko NAMBU, and Toshikazu TAKATA: Molecular Design for High Performance Thermosetting Resins; *NIPPON GOMU KYOKAISHI*, **1990**, 63, 738-748.

Takeshi ENDO: Future Expected from Flask; *Mirai Zairyō*, **2001**, 1, 1.

Takeshi ENDO and Atsushi SUDO: Monomers Expected to Play an Active Role in the Field of Functional Materials; *Kobunshi*, **2009**, 58, 411-416.

Books: 58

Takeshi ENDO: Polystyrene; *Kobunshi*, **1980**, *29*, 442-446.

Takeshi ENDO: Development of New Electron Transport System and Its Application to Polymer Membrane; *Membrane*, 1984, 9, 146-160.

Takeshi ENDO: Polymers that Hardens with Water; *Chemistry and Education*, 1987, 35, 528-531.

Shinji KOJIMA and Takeshi ENDO: Functionality of Polyolefines; *Kinouzairyyo*, **1993**, 203

Takeshi ENDO and Fumio SANDA: Earth-Friendly Material Technology; ChikyuKankyotozairyuro (Shokabo Press), 1999, 198-221.

Takeshi ENDO: Read the Future from the Flask; Mirai Zairyuro, 2001, I, 1.

Takeshi ENDO and Ikuyoshi TOMITA: Development of New Solid-State Reaction Field Based on Precision Polymer Material for New Development of Combinatorial Chemistry; New Development of Conbinatorial Science (CMC Press), 2003, 134-144.

Takeshi ENDO: Expectations for academic societies that support new research and technology development systems; Chem. Chem. Ind., 2004, 27, 10-11.

Takeshi ENDO and Atsushi SUDO: Monomers Expected to Play an Active Role in the Field of Functional Materials; *Kobunshi*, 2009, 58, 411-416.

Takeshi ENDO: Feeling for Young Leaders Who Are Expected in the Future; *Kobunshi*, 2014, 63, 55.